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Time Evolution of Infinite Anharmonic Systems 
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We prove the existence of a time evolution for infinite anharmonic crystals 
for a large class of initial configurations. When there are strong forces 
tying particles to their equilibrium positions then the class of permissible 
initial conditions can be specified explicitly; otherwise it can only be shown 
to have full measure with respect to the appropriate Gibbs state. Uniqueness 
of the time evolution is also proven under suitable assumptions on the 
solutions of the equations of motion. 
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1. i N T R O D U C T I O N  

The t ime evolu t ion  o f  classical  (or  quan tum)  H a m i l t o n i a n  dynamica l  systems 
conta in ing  an infinite n u m b e r  o f  par t ic les  is o f  grea t  interest  in s tat is t ical  

mechanics ,  being an  essential  ingredient  in the  s tudy o f  nonequ i l ib r ium 
p h e n o m e n a  in mac roscop ic  systems. There  are  m a n y  difficulties, however ,  in 
dea l ing  with the  dynamics  o f  infinite systems and  the avai lable  results  on  the 
existence o f  the  t ime evolu t ion  o f  such systems are  no t  ent i rely sat isfactory.  
I t  is only  for  one-d imens iona l  classical  systems ~1) or  h a r m o n i c  crystals  ~2) tha t  
we have a s t rong  evo lu t ion  theorem,  i.e., we can  specify explici t ly a class o f  
ini t ia l  cond i t ions  for  which a t ime evo lu t ion  exists. This  set o f  ini t ial  con-  
d i t ions  is f u r t he rmore  a p p r o p r i a t e  for  a large class o f  in terac t ions  be tween 
the par t ic les  and  has full equ i l ib r ium measure  for  all these in teract ions .  In  
cont ras t ,  all tha t  has  been p roven  so far  for  h igher  d imens ions  ~3-5> is the 
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existence of a time evolution for a given interaction on some unspecified set 
of initial configurations which has full measure with respect to the equilibrium 
state for that interaction. It is the purpose of  this paper to prove the existence 
of a strong time evolution for a certain class (where condition A3 of Section 2 
holds) of  anharmonic crystals (6> in arbitrary dimensions and a weaker time 
evolution for very general anharmonic systems (Section 4). 

2. E X I S T E N C E  O F  T I M E  E V O L U T I O N  

The setting is the lattice 7/~. At each point i ~ 7:~ we have an oscillator 
with coordinate q~ E E and momentum p~ ~ R. Really, we should take q~ and 
p~ in R k for some k; with k = v this would represent, physically, the fact 
that each point of 71~ is the equilibrium position of a particle. To avoid 
complicating the notation, we take k - -  1, but our results obviously go 
through for general k. By q (resp. p) we denote the collection of oscillator 
coordinates (resp. momenta). 

The oscillator variables are regarded as functions of time t, {q~(t), p~(t)), 
and are represented collectively by q(t) and p(t). They satisfy the following 
infinite set of coupled differential equations :- 

dq,(t)/dt = p,(t)  (la) 

dp~(t)/dt = F~ = -8U~(q~(t))/8q~ + R~(q(t)) (lb) 

In Eq. (lb) we wrote F~, the force acting on the ith particle, as a sum of two 
terms: a gradient of  a "self-energy" term U~(q~) and a force R~, which we 
shall take (but need not have) to be the gradient of  some interaction energy 

R~ = - ~ ~ Vj(q)/~q~ (1 c) 
s 

Our basic assumption in this part is that the self-energy U~(q~) is such a 
steeply increasing function of  q~ that it "domina tes"  the motion of the 
particles when they are far from their equilibrium positions. We also assume 
that the interactions have a finite range D (this is convenient but not essential). 
Stated precisely, we assume: 

A1. V~(q) depends only on those qj for which the Euclidean distance 
[i - j [  ~< D. 

A2. Each Uj(qj) and Vj(q) is a twice continuously differentiable 
function of its arguments. 

A3. ]qj[ ~< C1U:(qj) + Q ,  CI and Q nonnegative constants. 
A4. There exist nonnegative bounded constants A~j < C, A~: = 0 for 

[i - j ] > D, such that 

[p,Ri(q)l ~< ~ A~j.L#j (2a) 
J 
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where 

s q~) = �89 + U~(q~) + K/> 0, K a constant (2b) 

Example .  Conditions A will be satisfied if U~(q~) is a polynomial of 
degree 2n whose leading coefficient A~ is strictly positive, A~ >/ A > 0, and R~(q) 
is a multinomial of degree at most n. 

The nonnegative functions ~ will play an important role in establishing 
the existence and uniqueness of solutions to the equations of motion (1). 
They are similar to self-energy or Lyapunov functions. 

The problem posed by Eqs. (la)-(lc) is the following: Given suitable 
initial data q(0), p(0), find q(t), p(t) that agree with the initial data at t = 0 
and satisfy (la)-(lc). This problem is equivalent to another one: Find q(t) 
such that 

fo q~(t) = q~(O) + p~(O)t + (t - s)F,(q(s)) ds (3) 

Any solution to (3) will satisfy the initial condition and will be differentiable. 
One can then define p~(t) = dq~(t)/dt and (la)-(lc) will be satisfied. Con- 
versely, any solution to (la)-(lc) satisfies (3). 

Def ini t ion .  We denote by Br the real Banach space of sequences 
= {~:j}, j ~ 77 v, such that the norm 

II  llr = sup ( [exp( - [ j  Ir)]16l} (4) 
j~TZV 

is finite. 

komma 1. Let q(t), p(t) be solutions of (la)-(lc) defined for 0 ~< t ~< T, 
with initial data q(0) such that s = {~-q~(0)} ~ Br, where we have written 
~ ( t )  for ~(p~(t) ,  q~(t)). Then there is a constant a, independent of the initial 
condition but depending on r, such that 

[[ ~(t)I[r ~< [exp(at)] ][s (5) 

Proof. Using the equations of motion (la)-(lc), we have 

d~( t ) /d t  = p~(t)R~(q(t)) (6) 

By conditions A3 and A4 

(d/dt)Se~(t) <~ ]d~(t)/dt[ <~ ~ A,j.L~(t) (7) 
J 

where the A~j are constants, independent of t; 0 ~< A~j ~< C; and A~j = 0 for 
[i - j[ > D, the range of the potential. I f A  denotes the matrix with elements 
A~y, then (2> W(t) = [exp(At)][~(0)[ is a solution of the equations 

d%/dt = ~ A,jWj(t), ~j(O) = [,L~3.(O)[ (8) 
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Standard arguments show that ]~(t)] ~< ~F~(t), so Eq. (5) follows from (7) 
with a equal to the r-norm of the bounded operator A on Br. 

Theorem 1. Let q(0), p(0) be such that Ae(0) (defined in Lemma 1) 
belongs to Br. There then exists a ~ Br solution of Eqs. (la)-(lc) defined for 
all t. 

Proof. We shall first consider the case of a finite system in a bounded 
region A~ = 7?~. Let q~(t), p~(t) be the solutions of the equations 

dqi~/dt = p,~(t) r ~ for i~ (9a) A~ 
dp~/dt F~(q~(t))J (9b) 

dq~/dt = dp~/dt = 0 for i q~ A, (9c) 

with the initial conditions q~"(0) = qi(0), p~"(0) = pi(0), i.e., Eqs. (9a)-(9c) 
are time evolution equations for q"(t), p"(t) with all the particles outside As 
"t ied down"  to their initial positions. (2'3) Solutions of (9a)-(9c) are prevented 
from going to infinity in finite time by Lemma 1 ; they therefore exist for all 
time. The time evolution mappings T~" generated by (9a)-(9c) leave invariant 
the energy in A,,  

Ha(q, p) = ~ [lp2 + U~(q,)] + ~ '  Vj(q) 
i~Aa  3" 

where 2 '  is the sum over all j such that dist(A A~) ~< D. The solutions of 
(9a)-(9c) will satisfy the equations 

qi~(t) = q~(O) + p~(O)t + I t (t - s)Fi(q~(s))ds 1 (10a) 
,dO 

for i ~ A~ t , t  

p,~(t) p~(0) + J0 F~(q~(s)) ds (10b) 

q,~(t) = q~(O), pi~(t) = p~=(0) for i • A~ (10c) 

Using now the bound (5) for the time evolution Tt ~, we have, by con- 
dition A3, that ]F~(q~(t))[ < K~ for t e [0, T] with K~ < ~ independent of A~. 
Hence by the Arzela-Ascoli theorem we can choose sequences A~ ~ E ~ 
such that q~(t), p~(t) --+ q~(t), p~(t) uniformly on [0, T]. This is true for all 
finite T, so the sequence can be further refined to get uniform convergence on 
every bounded interval. The qi(t) will satisfy Eq. (3), so the (q(t), p(t)) satisfy 
(la)-(lc), the equations of motion for the infinite system, with the initial 
conditions (q(0), p(0)). 

By our assumption, Lie(0) ~ B,. Hence, by (5), we also have an estimate 
of the form 

.LPj(t) = �89 + Uj(qj(t)) + K < K" exp(rlj[), [t[ ~< T 
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for each T (but where K '  grows with T). By Aa this implies 

[qj(t)[ < C '  exp(rl j l) ,  [pj(t)l < C" exp(�89 (11) 

This gives us rather good control over the time evolution, e.g., if the initial 
values are bounded, lq~(0)[ < C and [p~(0)l < C, then q~(t) and p~(t) will 
also be bounded for all finite t. 

3. U N I Q U E N E S S  OF T I M E  E V O L U T I O N  

Having established the existence of solutions of Eqs. (la)-(lc) for a 
large class of initial conditions, we now consider their uniqueness. As is 
generally the case, e.g., for harmonic systems ~2) we can obtain uniqueness 
only if we impose some conditions on how the solution {qj(t), pj ( t )}  grows 
with [j]. 

Definit ion.  For any family B = {B~} of positive constants, define 
A(B) = {q: [q,[ ~ B~ for all i} and define Bk = sup{B,: Ii[ ~< k}, k = 1, 2 ..... 
We will say B is a sequence o f  uniqueness if (a) the following holds: 

lim sup/~/k < ~ (12a) 
k. -*  oo 

and (b) there exists a constant c such that 

sup ~ lOF,(q)/gqjl <<. ci 2 for all i (12b) 
qeA(B) J 

Theorem 2. Let B be a sequence of uniqueness. Then two solutions 
q~l)(t) and q~2)(t) of (3), both defined on [0, T] and both taking values in 
A(B), are identical on [0, T]. 

Proof .  Assume the contrary. Then we can assume that there are arbi- 
trarily small, positive t 's for which qm(t) # q<2)(t). We will show that this 
leads to a contradiction. Writing out (3) for {q~Z)(t)} and {q~2)(t)} and subtract- 
ing the two gives 

fo q~l)(t) - q~2)(t) = dtl  (t - tO[Fi (qm(h) )  - Fi(q(2~(h))] 

Let 

3,( 0 = sup{lq}l'(t) - q~2)(t)l: [i] ~< nD} 

where D is the range of the potential, as defined in A1. We then get, using 
(12b), 

3n(t) ~< [ f~dtz( t - tz )3n+~( t~)]cn  z 
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Iterating this k times, then using the bound 3n+~(t) ~ 2/~,+a)D, we obtain 

[fo' ] 3~(t) <~ dt (t - tt)2e-~3,~+k(t) c~[n(n + 1) ... (n + k - 1)] 2 

t 2 ~  <~ ~ (2B(,+k)D)c~[n(n + 1)... (n + k - 1)] 2 

Thus, letting k -~ o% we find that 3,(t) = 0 for 

0 < t < "!.filimsup[2B("+~)vc~[n(ng-* ~o t .-. (n + k -  1)]21 zl2~} - 1 _  - -  

= 2(�89 lim sup/~gl2~)-1 
h:~r 

This is true for all n, so 

q[l)(t) = q~2)(t) 

for all i, provided 

t < 4[c lira sup(B~/e)] -1/2 
k,-,~ o0 

which proves the theorem. 

Example .  If  (as in the example of Section 2) there exists a constant 
el such that 

]OFdOqj I <~ cl(sup{lqj]: l i - j [  ~< D}) 2"-2 (13) 

then any sequence of the form Bj = blJl 1~("- 1) is a sequence of  uniqueness if 
n>~2.  

This means that we have uniqueness in the class of solutions such that 

su~sup{[qj( t) l / ( l j l  ~l("-~) + 1)} < oo for all ~- 

Arguments similar to those leading to Eq. (1 I) show that if Laj(0) grows no 
faster than ]jl lf("-~), then there does exist a solution in this class. 

In the harmonic case (n = 1), condition (12b) is vacuous and any 
sequence (Bj) such that 

- - l lk  sup{Bk } < oo 
k 

is a sequence of  uniqueness (compare Ref. 2). 

4. W E A K  T I M E  E V O L U T I O N  FOR G E N E R A L  I N T E R A C T I O N S  

In this section we sketch a proof that, under very general assumptions, 
solutions to the equations of motion exist for almost all initial conditions 
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with respect to any Gibbs state. We do not assume here that conditions A3 
and A4 hold. The proof is very simple and almost nothing needs to be assumed 
about the interaction, but it should be noted that very reasonable interactions 
--such as the one-dimensional harmonic chain with formal interaction 
energy �89 ~ (q~+ 1 - q~)2--do not have any Gibbs states at all. (2~ About such 
interactions our theorem evidently says nothing. We refer the reader to recent 
work for an analysis of Gibbs states for the kind of system considered 
here.(7-9) 

We will assume as before that our interaction is of Hamiltonian form 
with range D, i.e., we assume that A1 and A2 hold. In addition, we assume 
that:  

B1. For each finite subset A~ of Z ~, the equations of motion (%)-(%) 
admit solutions for all time for all initial points. 

B2. For each A~, each /3 > 0, and each specification of  the q, tbr 
i r A~, the measure 

exp[-/3H~(q, p)] I ~  dqj dpj (14) 
3sAa 

with H~ given in (10) is finite (normalizable) on (R x R)A~. 

Condition B2 makes it possible to define Gibbs states by an obvious 
adaptation of the definitions used in other cases, but it does not imply the 
existence of nontrivial Gibbs states. 

We note that (i) by conservation of energy and Liouvitle's theorem, any 
Gibbs state is invariant under Tt ~ for all a, t; (ii) with respect to any Gibbs 
state, the p~ are independent, identically distributed, Gaussian random 
variables of mean zero. 

Theorem 3. Let /~ be a Gibbs state for the interaction under con- 
sideration. For ~z-almost all initial points {q~,p~}, there exists a solution 
{q,(t)} of Eq. (3) defined for all t and satisfying 

lq,(t) - q~l 
sup sup (15) (1 + t2)[log+(i)] 1'2 < oe 

where log+U) = sup[Iogljl, 1] 

Proof. (The argument here is similar to that used in Ref. 3.) For any 
x = {q~, p~} define 

B(x) = sup [Pil 
[log+(q,)] 1/2 

foo B(Tt~x), B~(x) = lim inf /~(x)  dt 
~ ( x )  = _o~ 1 + t ~ ~ _ , ~  
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It follows from (ii) that f B d/~ < co; hence, from (i) and Fubini's theorem, 

f B~ dt~ is finite and independent of , .  By Fatou's lemma, f B~ d/~ < co. We 

will show: If B~(x) < co, then there exists a solution to (3) satisfying (15). 
To see this, note first that there must then exist a sequence ~ -+ co and 

a constant C such that 

B~(x) ~< C for all n 

Hence, 

l q ~ . ( t ) - q , j  <~ dt~p~.(tl) <~ (1 + t 2) ~oI + t l  2 

~< (1 + tZ)[log+(i)]~12Bg.(x) 

~< (1 + t2)[log+(i)]112C for all i, n, t (16) 

Since F~ depends only on a finite number of  the qj, and since each Vj is 
continuously differentiable, this bound implies a family of bounds of the 
form 

[dp~.(t)/dt t <~ K~(ltl) 

where each K~ is a nondecreasing function of t (which does not depend on n). 
The proof of the existence of solutions is now completed in the same way as 
in Theorem 1 ; (15) follows from (16) by passage to the limit. 

There remains the question of uniqueness. Suppose that (13) holds with 
some n > 1. If {q~, p,} satisfies 

sup ([q~l/]ii ~/(~-~) < co (17) 
t~Zv 

and if there exists a solution to (3) satisfying (15), then 

sup sup[lq~(t)j/lij~("-lq is finite for all ~- 

Theorem 2 asserts that the solution is unique in this class. We would therefore 
like to know whether the condition (17) holds ~ almost everywhere. A suffi- 
cient condition is given by the following: 

P r o p o s i t i o n .  

then 

If there exists 7 > v(n - 1) and C such that 

f [  < C for all i 1' q, d~ (18) 

sup (]q~l/li[ 11(~-1~) < co /z almost everywhere 
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Proof.  

Since 7(n - 1) > v, 

~zT_ v 

SO by the Bore l -Can te l l i  l emma  <1~ 

lira sup(lq~l/lil 1I~'~-1)) ~< 1 tz a lmos t  everywhere 
t 

Collect ing the above  results,  we have the fo l lowing:  

T h e o r e m  4. Let  the in terac t ions  satisfy condi t ions  A~, A2, B~, and  B2 
and  also (13) with n > 1. Le t / z  be a Gibbs  s tate  for  this in te rac t ion  such that ,  
for  some 7 > v(n - 1), (18) is satisfied. Then f o r / z - a l m o s t  all  {q~,p~} there  
exists a so lu t ion  to  (3) such tha t  

sup sup[lq~(t)[/[ill/~-~) ] < o~ for  all  ~- 
I t l ~  i~2~ v 

and  this solut ion is unique.  
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